
Introduction to Crossplane
Stéphane Di Cesare
Senior Engineer, Platform Experience

SRE Meetup Munich, 26.09.2023



Deutsche Kreditbank

founded 1990

direct bank for private customers

• over 5 million customers

• over 5000 employees

investment bank for specific branches

• largest financer for renewable energy in 
Germany

We are hiring!

jobs.dkb.de

https://jobs.dkb.de/


Why Crossplane at DKB?

our goal: promote product team responsibility -> 
“you build it, you run it”

... but product teams cannot bridge all required 
technical and bank-specific skills

Our platform is leveraging Crossplane to provide 
platform building blocks managed by the 
relevant teams



What is Crossplane?

Crossplane allows to run a resource control plane 
on top of Kubernetes.

Crossplane is an incubating CNCF project, mostly 
run by upbound.io.

Main features:

• Extension to the Kubernetes API

• Manage resources as code

• Automatically reconciles resources

• Provides a higher abstraction layer 
(composite resources), allowing better control 
of the relations between resources

Expected state

Resources

upbound.io


Crossplane and Kubernetes
Kubernetes API

What is Kubernetes?

Most people know Kubernetes as a container 
orchestration system

Kubernetes also defines an extensible API that 
can be used to define your platform

Crossplane extends the Kubernetes API to 
manage resources located inside or outside 
Kubernetes



Crossplane and Kubernetes
Operator pattern

Core Kubernetes objects are defined by YAML 
Resource Definitions.

Kubernetes allows to define custom objects 
through Custom Resource Definitions.

CRDs are managed by Operators, which are 
ensuring that resources are staying 
synchronized with their definition.

Operator

Kubernetes Resources

Custom 
Resource 
Definition

Kubernetes 
store (etcd)



Crossplane – Managed Resources and Providers

Crossplane allows to work with internal or 
external resources transparently by introducing 
the concept of Resource Providers.

Resources under control of Crossplane are 
referred to as Managed Resources.

Many open-source providers are available for 
different kinds of resources.

Crossplane providers can be generated from 
Terraform providers.

Custom providers can be created (in Go) for 
custom resources.

Provider Kubernetes 
store (etcd)

Custom 
Resource 
Definition

Managed resources 
might be inside or 

outside Kubernetes

Managed Resources



Crossplane – Composite resources

Database

Security 
Group

Access 
Control

Database 
Resource

Monitoring

(...)

Expected state

Managed resources can be aggregated into 
composite resources.

This can be used to provide a better user 
experience, for example by simplifying the 
interface or enforcing compliance.

The API for a composite resource is defined by a 
Composite Resource Definition (XRD)

Its implementation is described in a 
Composition.

composite 
resource

managed 
resources

custom 
resources

Compliance



Crossplane example

Crossplane PostgreSQL claim RDSInstance

DBSubnetGroup

SecurityGroup

kubectl 
apply

(claim = request for a composite resource)

managed resourcescomposite resource



Crossplane and GitOps

The expected state is stored in a code 
repository, and synchronized using GitOps.

GitOps principles:

• git repository describing the 
infrastructure is synchronized with the 
platform

• manual platform operations are 
discouraged

This can be implemented with Argo CD or 
Flux for example.

https://about.gitlab.com/topics/gitops/

Expected state

Platform-level objects

Infrastructure

https://about.gitlab.com/topics/gitops/




Lessons learned
Team organization

Start small and focused

• Spend time directly with customer stakeholders in the beginning, rather than only with 
internal organization

• Start with a small platform engineering team and expand when needed

Aim for short feedback loops

• Start with an “officially experimental” platform (MVP, not prototype)

• Identify the best pilot users (easy to work with, provide good feedback)

• Clearly document the state of the platform features



Lessons learned
Communication with consumers

Explain the platform concepts well

• Crossplane involves a lot of abstraction that is not trivial for everyone, especially for 
developers not used to cloud-native.

Be ready to assist consumers technically

• Readily available developer information usually documents access to the cloud API, not 
Crossplane. Developers will need help to convert this to Crossplane.

• “Embed” engineers in the consumer teams if needed, or create a specific sub-team.

Define consumer application components well

• Clarify what are the important components and how their health can be assessed.

• Good monitoring + clear SLIs/SLOs are very useful to quickly identify issues when 
troubleshooting.



Lessons learned
GitOps and Operations

Separate application code and expected resources state

• use different directories or repos

• standardize the structure as much as possible

• simplifies operations and troubleshooting

Work on the main branch for expected resources state

• allows to troubleshoot effectively, especially when different people are involved

• allows for reviews of the environment without direct production access

Train Operations to work with Crossplane

• Operations are typically not used to work with GitOps and reconciliation

• Operations must understand very well how the infrastructure is defined, so that they can 
easily make modifications 


