From AZs to the Internet: Cracking the code on AWS networking costs

Akshay Kapoor

Cloud Infrastructure @ AWS

15+ Years

Consult AWS customers (since ~5 years)

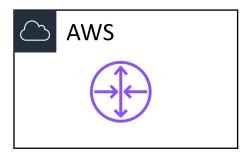
Domains

Software Development

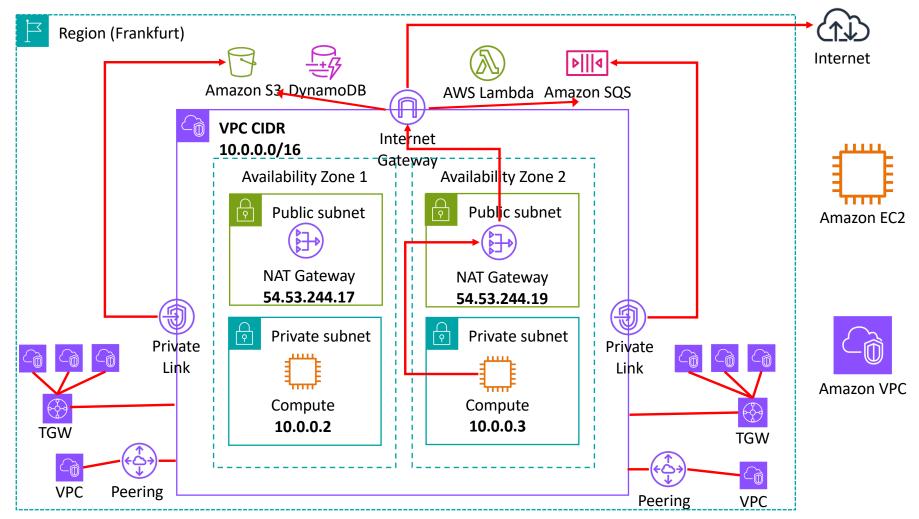
DevOps

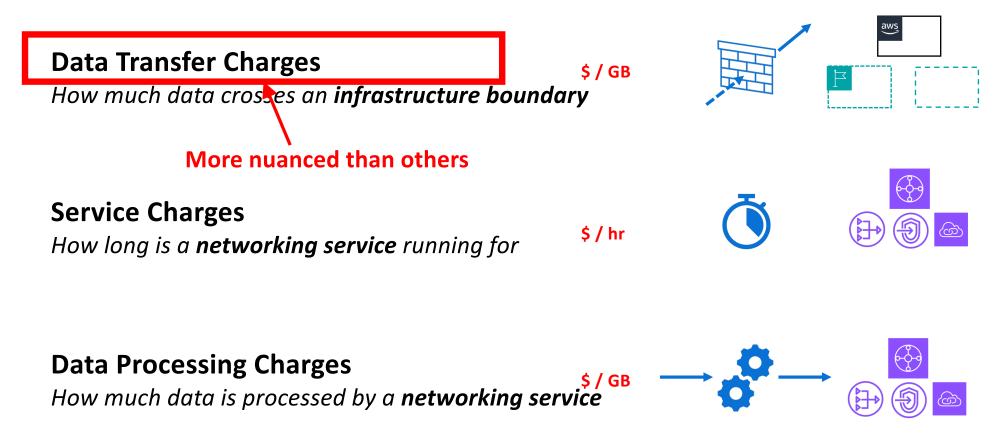
Cloud Infrastructure

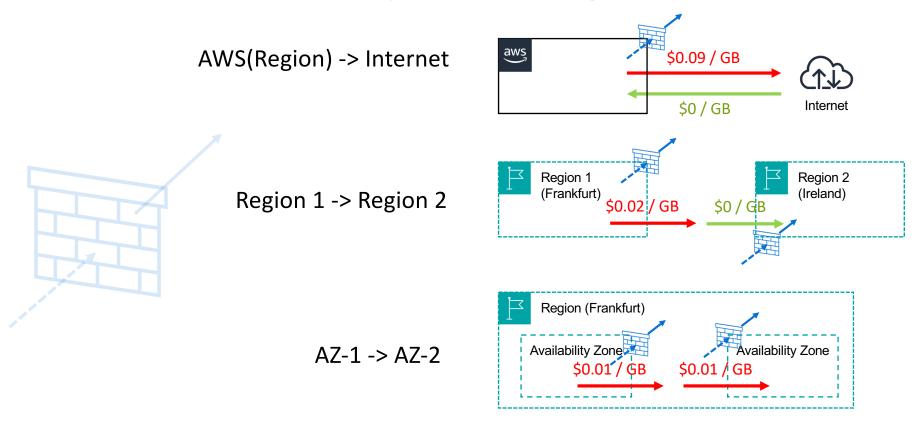
Book Author


AWS DevOps Simplified

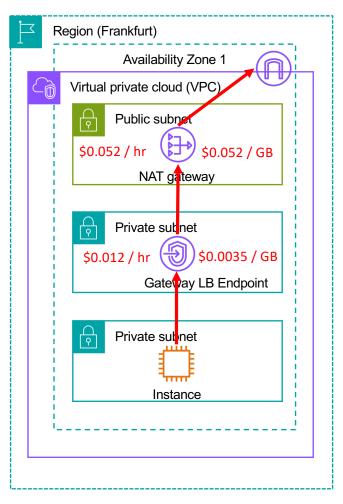
Networking in cloud is peculiar

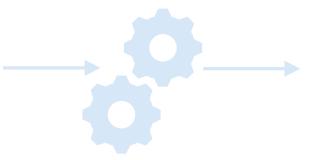



Where do you host your workloads?



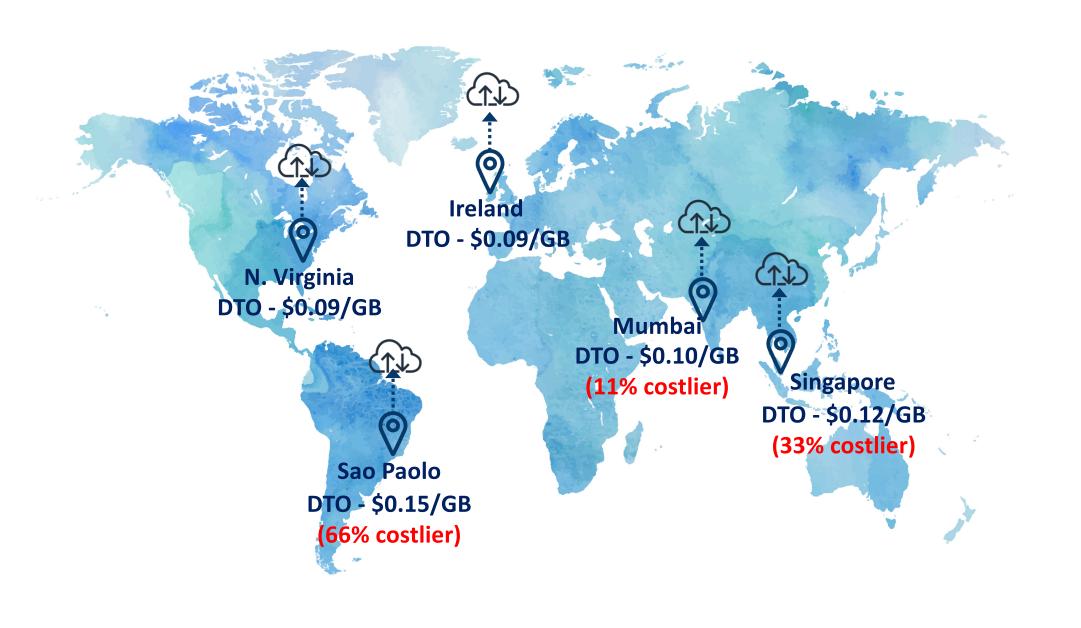
Dimensions of AWS Networking costs


Data transfer – be wary of crossing the "boundaries"



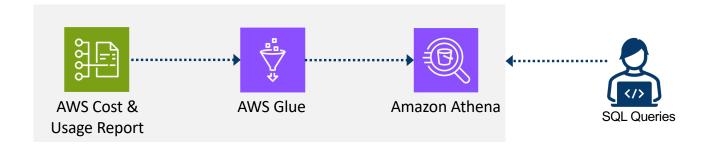
Note: All costs are for eu-central-1 region (Frankfurt). Might vary for others

Data processing + Service Cost (NAT Gateway + GWLB)



...back to the customer case

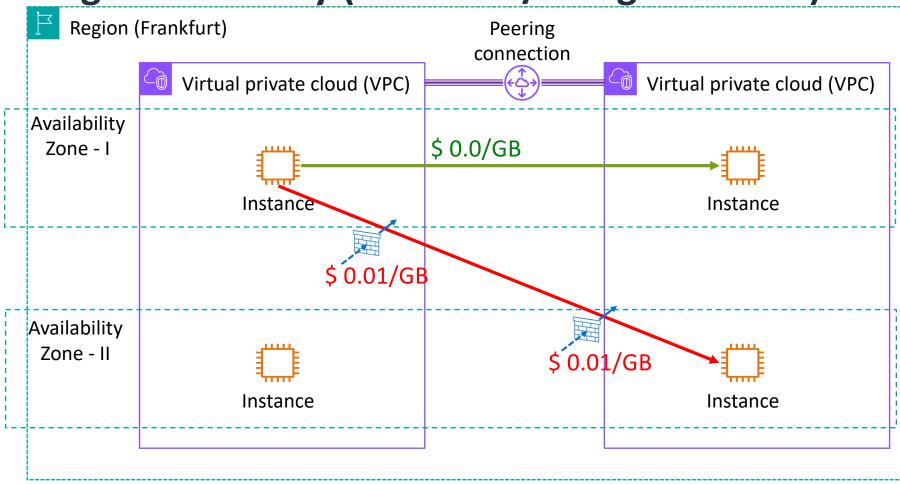
210,000 USD/month



The **AWS region(s)** you choose to host your Workloads will **influence your data transfer costs**!

Data Transfer Costs

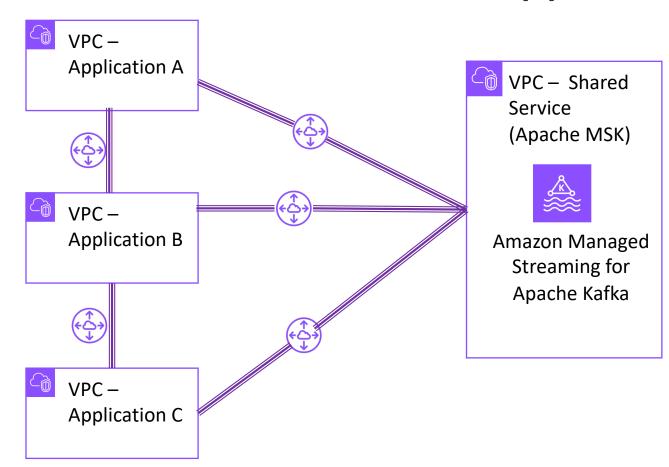
	Charge Type	Cost
1	IntraRegion	102,281.53
2	InterRegion Outbound	37,093.13
3	AWS Outbound	17,766.04
4	Inter Region Peering Data Transfer Outbound	3,619.92
5	CloudFront to Origin	9.79456E-5
6	IntraRegion-xAZ-In	0.0


Data transfer costs (Intra-Region)

1	IntraRegion	102,281.53
2	InterRegion Outbound	37,093.13
3	AWS Outbound	17,766.04
4	Inter Region Peering Data Transfer Outboun	d 3,619.92
5	CloudFront to Origin	9.79456E-5
6	IntraRegion-xAZ-In	0.0

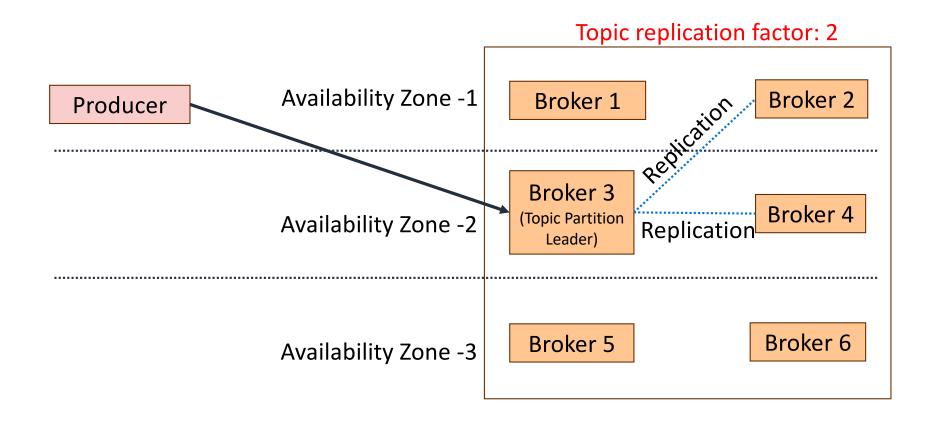
Dissecting the "Intra-Region" costs

	Cost	Product Code	Ch	arge Type	
1	40,378.47	AmazonEC2	EU-DataTransfei	-Regional-Bytes InterZo	ne-In
2	26,596.16	AmazonEC2	EU-DataTransfei	-Regional-Bytes VPCPee	ring-In
3	9,527.78	AmazonEC2	EU-DataTransfei	r-Regional-Bytes InterZo	ne-Out
4	6,925.35	AmazonMSK	EU-DataTransfei	r-Regional-Bytes Bandwid	dth
5	6,332.62	AWSELB	EU-DataTransfei	r-Regional-Bytes LoadBai	lancing

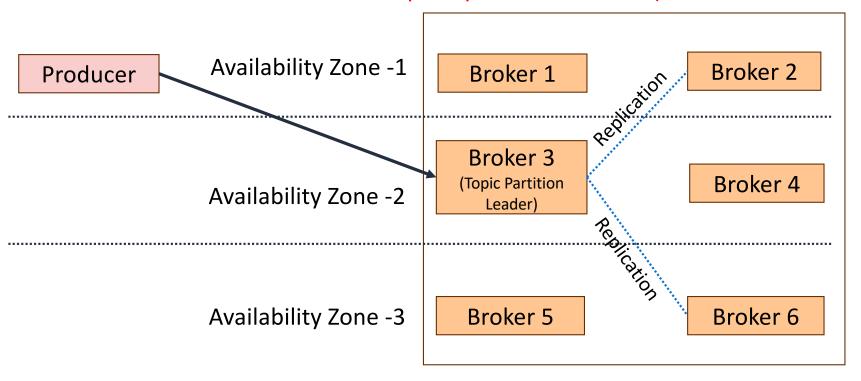

Peering costs money (with x-AZ/x-Region traffic)

VPC Peering Connections are free **BUT** cross-AZ AND cross-region data transfer charges still apply!

Communication Pattern - VPC(s) to Kafka


VPC Peering Limitations

- No transitive routing
- Overlapping IP Address not supported
- Scalability and Mgmt. complexity
- Chances of NAU
 exhaustion
 (Many AWS users miss this!)


Overuse of VPC Peering Connections can introduce operational overheads and impact reliability!

Let's look at Kafka internals!

Kafka topic replication with "zone awareness"

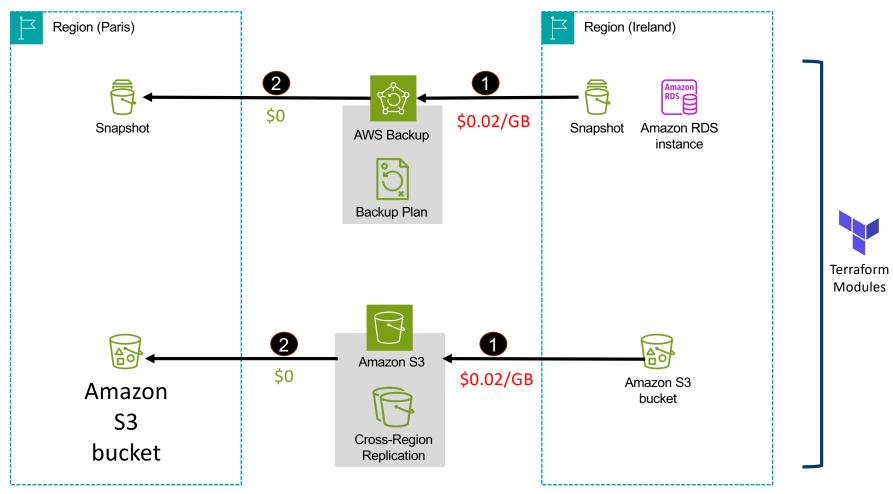
Topic replication factor: 2 (with rack awareness)

"local fetch" to reduce cross-AZ transfers

Topic replication factor: 3 (with rack awareness)

Ensuring "zone-awareness" in workloads will reduce/eliminate data transfer costs

Note: AZ names like *eu-central-1a* can point to different zone IDs (euc1-az1)across different AWS accounts)


Data transfer costs (Inter-Region)

1	IntraRegion	102,281.53
2	InterRegion Outbound	37,093.13
3	AWS Outbound	17,766.04
4	Inter Region Peering Data Transfer Outbo	ound 3,619.92
5	CloudFront to Origin	9.79456E-5
6	IntraRegion-xAZ-In	0.0

Dissecting the "Inter Region Outbound" costs

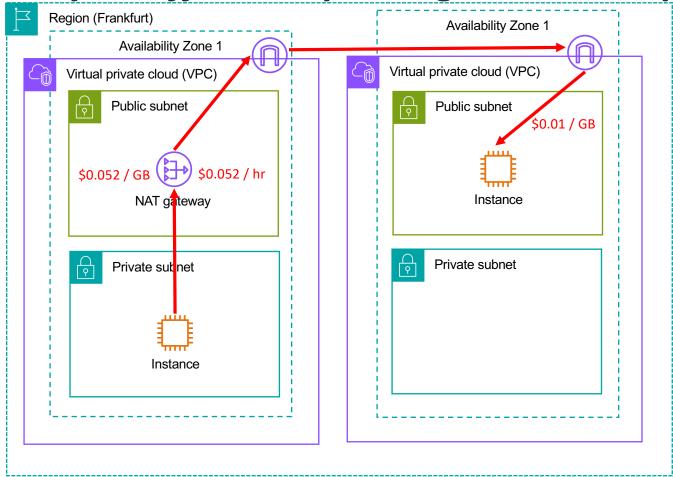
1 12,941.24 AmazonRDS EU-EUW3-AWS- EU (Paris) Out-Bytes (Ireland)		Cost	Product Code	Charge Type	Source	Destination	
2 $11,875.01 \text{ AmazonS3}$ $EU-EUC1-AWS-Out-Bytes$ EU EU $(Ireland)$ $(Frankfurt)$ $EU-EUW3-AWS-Out-Bytes$ $(Ireland)$ EU $(Ireland)$ EU $(Ireland)$ $(Ireland)$	1 2 3	11,875.01	AmazonS3	Out-Bytes EU-EUC1-AWS- Out-Bytes EU-EUW3-AWS-	(Ireland) EU (Ireland) EU	EU (Frankfurt)	

Data Transfer Costs resulting from S3 replication and AWS Backup

AWS **service-initiated operations** can also contribute to data transfer costs!

NAT Gateway costs

1

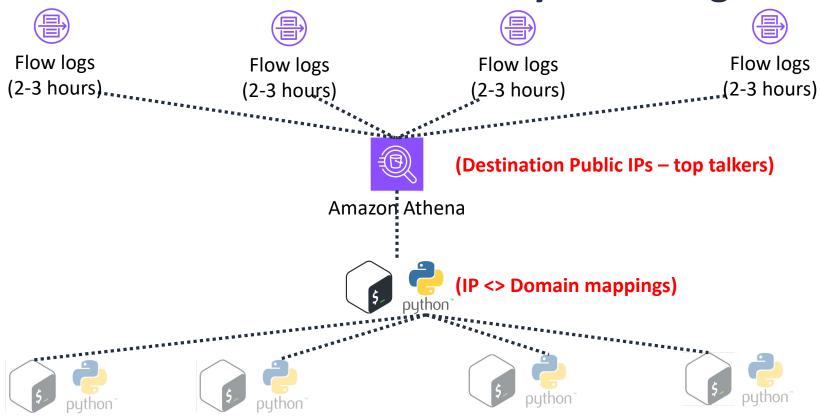

NAT Gateway 50,327.68

Dissecting "NAT Gateway" pricing

	Charge Type	Total Usage	Cost
1	NAT Gateway Hourly Charge	117211.0	5,623.89
2	NAT Gateway Data Transfer In	138117.30	0.00
3	NAT Gateway Data Processing Charge	806472.53	38,710.68
4	NAT Gateway Data Transfer Same Region	422680.62	4,226.80
5	NAT Gateway Data Transfer Out	<i>72670.58</i>	1,766.31

Why "Traffic Hair-pinning" is an anti-pattern!

Added Latency


Data Processing Costs

Service charges for additional components

Using Public-IPs for Intra-region traffic is an anti-pattern. Incurs an additional \$0.01 - in each direction!

What destinations are NAT Gateways reaching out to?

A lot of these domains made sense

104.17.3.109', '104.17.4.109'

*.facebook.com '157.240.221.18'

y.ssl-386-default.ssl.fastly.net '199.232.25.130'

*.blob.core.windows.net '20.150.76.228'

'3.233.145.102', '3.233.145.106', '3.233.145.111', '3.233.145.113', '3.233.145.122', '3.233.147.15', '3.233.147.19', '3.233.147.29', '3.233.147.30', '3.233.147.31', '3.233.150.112', '3.233.150.117', '3.233.150.118', '3.233.156.98', '3.233.157.164', '3.233.157.165', '3.233.157.20', '3.233.157.22', '3.233.157.34', '3.233.157.4', '3.233.157.6'

'34.107.65.220'

*.ravelin.com '34.111.112.107'

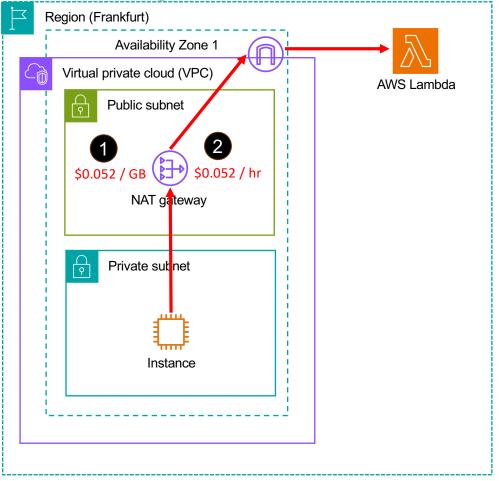
ingest.sentry.io '34.120.195.249'

api.stripe.com '34.240.123.193', '34.241.202.139', '34.241.54.72', '34.241.59.225', '34.250.89.120'

sentry.io '35.186.247.156'

ts01-b.cloudsink.net '50.18.194.39', '54.183.140.32', '54.183.142.105', '54.241.186.124', '54.241.197.58', '54.67.119.89', '54.67.123.234', '54.67.26.184', '54.67.48.56', '54.67.54.116', '54.67.68.88', '54.67.92.206'

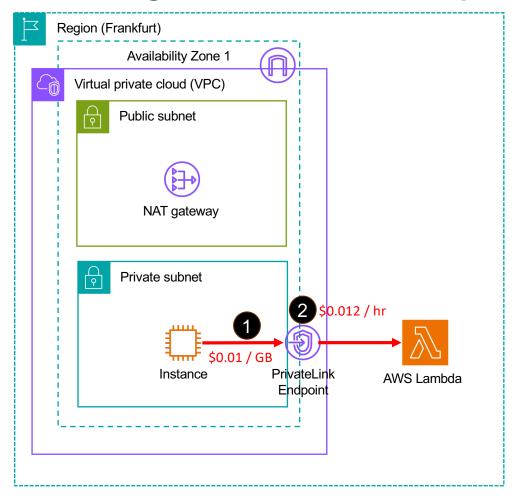
'52.95.118.165', '54.239.32.126', '54.239.37.73', '67.220.224.163', '67.220.226.247', '67.220.228.229'


But why Lambda!

```
lambda.eu-west-1.amazonaws.com '54.247.236.111', '54.247.236.123', '54.247.236.126',
'54.247.236.128', '54.247.236.145', '54.247.236.153', '54.247.236.168', '54.247.236.172',
'54.247.236.176', '54.247.236.221', '54.247.236.232', '54.247.236.243', '54.247.236.245',
'54.247.236.3', '54.247.236.40', '54.247.236.41', '54.247.236.45', '54.247.236.93', '54.247.236.94',
'54.247.237.104', '54.247.237.12', '54.247.237.120', '54.247.237.127', '54.247.237.13',
'54.247.237.157', '54.247.237.160', '54.247.237.164', '54.247.237.169', '54.247.237.177',
'54.247.237.190', '54.247.237.20', '54.247.237.203', '54.247.237.212', '54.247.237.221',
'54.247.237.228', '54.247.237.252', '54.247.237.39', '54.247.237.40', '54.247.237.41',
'54.247.237.59', '54.247.237.73', '54.247.237.85', '54.247.237.98', '54.247.238.10', '54.247.238.12',
'54.247.238.158', '54.247.238.16', '54.247.238.161', '54.247.238.189', '54.247.238.212',
'54.247.238.223', '54.247.238.235', '54.247.238.24', '54.247.238.28', '54.247.238.35',
'54.247.238.42', '54.247.238.49', '54.247.238.6', '54.247.238.66', '54.247.238.69', '54.247.238.8',
'54.247.239.1', '54.247.239.101', '54.247.239.119', '54.247.239.172', '54.247.239.174',
'54.247.239.201', '54.247.239.220', '54.247.239.236', '54.247.239.24', '54.247.239.242',
'54.247.239.244', '54.247.239.250', '54.247.239.255', '54.247.239.3', '54.247.239.44',
'54.247.239.56', '54.247.239.75', '54.247.239.89', '63.32.72.113', '63.32.72.116', '63.32.72.117',
'63.32.72.120', '63.32.72.128', '63.32.72.134', '63.32.72.137', '63.32.72.142', '63.32.72.156',
'63.32.72.167', '63.32.72.170', '63.32.72.175', '63.32.72.179', '63.32.72.183', '63.32.72.207',
'63.32.72.212', '63.32.72.213', '63.32.72.223', '63.32.72.225', '63.32.72.233', '63.32.72.237',
'63.32.72.238', '63.32.72.247', '63.32.72.255', '63.32.72.70', '63.32.73.102', '63.32.73.116',
'63.32.73.119', '63.32.73.12', '63.32.73.124', '63.32.73.130', '63.32.73.138', '63.32.73.143',
'63.32.73.146', '63.32.73.148', '63.32.73.154', '63.32.73.158', '63.32.73.161', '63.32.73.165',
'63.32.73.168', '63.32.73.17', '63.32.73.179', '63.32.73.182', '63.32.73.187', '63.32.73.188',
```

~1/3rd of NAT G/w traffic were Lambda invocations!

<redacted></redacted>	0.34 GB	Investigate if non-public connectivity options are available
*.facebook.com	2.43 GB	
y.ssl-386-default.ssl.fastly.net	1.46 GB	
*.blob.core.windows.net	0.6 GB	
<redacted></redacted>	2.12 GB	
<redacted></redacted>	4.24 GB	<same_as_above></same_as_above>
<redacted></redacted>	4.63 GB	<same_as_above></same_as_above>
ingest.sentry.io	1.65 GB	
api.stripe.com	0.53 GB	<same_as_above></same_as_above>
sentry.io	2.51 GB	<same_as_above></same_as_above>
ts01-b.cloudsink.net	2.19 GB	<same_as_above></same_as_above>
<redacted></redacted>	1.02 GB	
lambda.eu-west- 1.amazonaws.com	218.75 GB	32.68% of NAT Gateway Traffic volume (~from flow logs' capture of 2-3 hours).


Accessing Lambda service endpoints via NAT Gateway

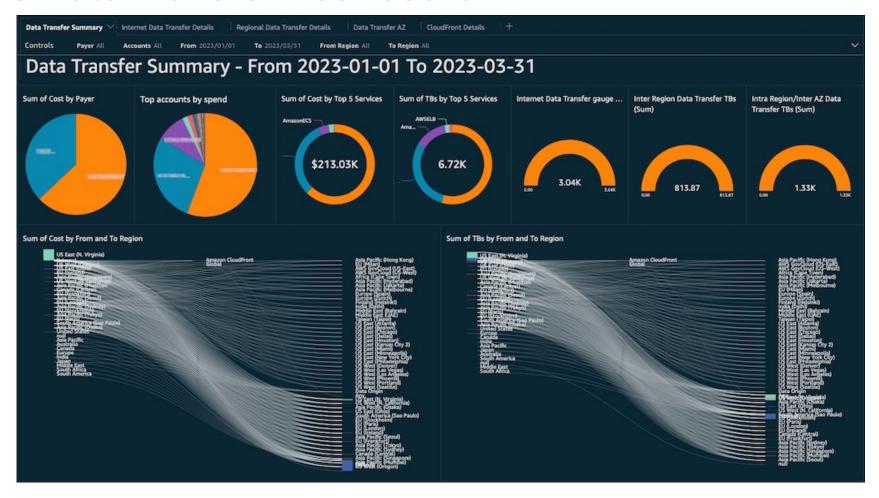
- 1 156,960 GB data transfer from EC2-1 >> Lambda \$0.052/GB NAT Processing = \$8161
- 730 hours \$0.052/hr NAT Service Usage = \$38

Total = \$8199

Accessing Lambda service endpoints via PrivateLink

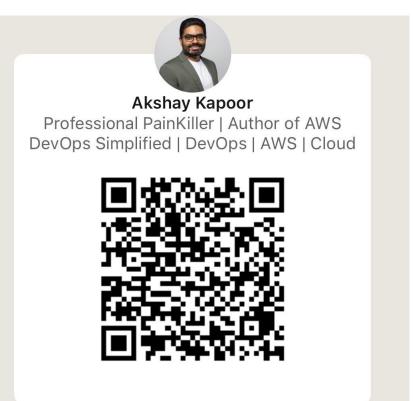
- 1 156,960 GB data transfer from EC2-1 >> Lambda \$0.01/GB PrivateLink Processing = \$1569
- 730 hours \$0.012/hr NAT Service Usage = \$8

Total = \$1577 (81% savings)


Use PrivateLink for accessing AWS Service Endpoints!

Key takeaways

Learnings


- 1. The AWS region(s) you choose to host your workloads can influence your data transfer costs
- 2. VPC Peering Connections are free BUT cross-AZ AND cross-region data transfer charges still apply
- **3. Avoid overuse of VPC Peering Connections** can introduce operational overheads and impact reliability
- 4. Ensuring "zone-awareness" in workloads can reduce data transfer costs
- 5. AWS service-initiated operations can also contribute to data transfer costs
- **6. Public-IPs for Intra-region** traffic is an **anti-pattern**. Incurs an additional \$0.01 (both ways)
- 7. Always prefer using **PrivateLink for accessing AWS Service Endpoints**

AWS Data Transfer Dashboard

Thank you!

Questions are welcome ©

